18 research outputs found

    An exploratory study on wind speed profiling of high-rise building/monument using EnviMET.

    Get PDF
    Envi-MET is a useful tool for simulating wind speed at building heights and modelling microclimatic conditions around buildings, including wind speed around buildings and other structures. Envi-MET is used in this study to simulate wind speed toward building heights. When R2 = 0.8186, relative bias is -0.0775, and RMSE is 0.2578, the agreement between Envi-MET simulation and ground observation indicates acceptable agreement. With this establishment, it was discovered that the building's height and wind speed are not the only factors causing destruction; the less friction of wind with surface features will also increase the wind speed, as shown by the results of the vertical profile wind speed in relation to the tollway building's height. At a height of 13 metres, the wind speed is 3.5 m/s. Wind circulation affects the building at this elevation, causing damage to the roof and ceiling. Buildings and structures can sustain significant damage as a result of high wind speeds. When wind speeds are high, the wind's force increases, causing pressure differences on different sides of a building or structure. The findings of this study inform relevant parties of the impact of wind on building construction and how it may influence variations in wind speed

    Land cover impacts towards thermal variation in the Kuala Lumpur City.

    Get PDF
    Physical geography and urban characteristics influence the urban climate conditions. Built-up areas, green urban parks, forest reserves, streets and terrain constitute the climatic interactions within urban areas. These have led to the variation of the urban climate condition throughout the world. Thus, in studying urban climate, the impacts of these factors are crucial to be examined. This study aims to examine the effects of six important factors, namely built-up areas, green covers, terrain elevation, building volume, surface roughness and land use type, which contribute to the variation of the urban climate condition within the Kuala Lumpur City. In this study, the effects of the six factors (urban parameters) towards the air surface temperature variation were statistically tested. Using the Weather Research and Forecasting (WRF) model and the remote sensing technique, the data needed for the analyses were extracted. The Geographical Information System (GIS) was employed as the analysis platform during the study. Based on the Spearman’s rho and Mann-Whitney U tests, it was identified that the six urban parameters and the air surface temperature variation are correlated. The further investigation conducted using the Kruskall-Wallis test has identified that only five of the urban parameters showed significant effects toward the air surface temperature variation, which are built-up areas, green covers, terrain elevation, building volume and surface roughness while the land use type was excluded. The findings of this study are very crucial as a pioneer research to integrate the urban climatic information in the urban planning decision making in tropical cities like Kuala Lumpur

    Impacts of Lateral Boundary Condition Resolution in Tropical Urban Climate Modelling for Kuala Lumpur

    Get PDF
    Choosing the best LBCs is still debated among researchers due to the errors resulted. However, several recommendations have been documented to control the errors propagated by LBCs. One of the recommendations is employing higher resolutions LBCs. In the present, many LBCs are developed with various resolutions; spatially and temporally, for many applications but no claims regarding the best LBCs for tropical climate modelling have yet been documented. Therefore, this study intends to analyse the impacts of lateral boundary condition resolution during numerical downscaling within a tropical city. This study serves as a site-specific investigation to determine the suitable LBCs for the focused study area. Two widely used LBCs with different resolutions were utilized to initiate the Weather Research and Forecasting (WRF) simulation model. The performances of the two LBCs were compared using statistical tests and analyses. The study has found that the LBC with higher resolutions excels the other LBC during inter-monsoon season. Nevertheless, it was identified that both LBCs were able to provide reliable reconstruction of the tropical climate condition of the Kuala Lumpur City as portrayed by similar results obtained. Thus, it is concluded that both LBCs can be employed in numerical downscaling for tropical urban regions similar to the Kuala Lumpur City

    Conceptualizing Spatial Heterogeneity of Urban Composition Impacts on Precipitation Within Tropics

    Get PDF
    Urban composition has exacerbated precipitation patterns. Rapid urbanization with dynamic composition and anthropogenic activities lead to the change of physical environment, especially land-use and land cover which subsequently magnifies the environmental effects such as flash floods, extreme lightning, and landslides. Due to extreme and elevated temperature trends with exacerbated rainfall patterns, these environmental effects become major issues in tropics. Albeit several studies pointed out that rapid urbanization induced precipitation, studies about the heterogeneity of urban composition on precipitation variables are still limited. Thus, this paper review studies about precipitation pattern in relation to the heterogeneity of urban composition that successfully integrates geographical information system (GIS) and remote sensing techniques to enhance the understanding of interactions between precipitation patterns against heterogeneity of urban composition. This article also addressed the current state of uncertainties and scarcity of data concerning remote sensing techniques. Evidently, with a comprehensive investigation and probing of the precipitation variables in the context of urbanization models fused with remote sensing and GIS, they put forward powerful set tools for geographic cognition and understand how its influence on spatial variation. Hence, this study indicated a great research opportunity to set the course of action in determining the magnitude of spatial heterogeneity of an urban composition towards the pattern of precipitation

    Assessing the contribution of open crop straw burning to ground-level ozone and associated health impacts in China and the effectiveness of straw burning bans.

    Get PDF
    In recent years, ozone pollution in China has been shown to increase in frequency and persistence despite the concentrations of fine particulate matter (PM2.5) decreasing steadily. Open crop straw burning (OCSB) activities are extensive in China and emit large amounts of trace gases during a short period that could lead to elevated ozone concentrations. This study addresses the impacts of OCSB emissions on ground-level ozone concentration and the associated health impact in China. Total VOCs and NOx emissions from OCSB in 2018 were 798.8 Gg and 80.6 Gg, respectively, with high emissions in Northeast China (31.7%) and North China (23.7%). Based on simulations conducted for 2018, OCSB emissions are estimated to contribute up to 0.95 µg/m3 increase in annual averaged maximum daily 8-hour (MDA8) ozone and up to 1.35 µg/m3 for the ozone season average. The significant impact of OCSB emissions on ozone is mainly characterized by localized and episodic (e.g., daily) changes in ozone concentration, up to 20 µg/m3 in North China and Yangtze River Delta region and even more in Northeast China during the burning season. With the implementation of straw burning bans, VOCs and NOx emissions from OCSB dropped substantially by 46.9%, particularly over YRD (76%) and North China (60%). Consequently, reduced OCSB emissions result in an overall decrease in annual averaged MDA8 ozone, and reductions in monthly MDA8 ozone could be over 10 µg/m3 in North China. The number of avoided premature death due to reduced OCSB emissions (considering both PM2.5 and ozone) is estimated to be 6120 (95% Confidence Interval: 5320–6800), with most health benefits gained over east and central China. Our results illustrate the effectiveness of straw burning bans in reducing ozone concentrations at annual and national scales and the substantial ozone impacts from OCSB events at localized and episodic scales

    Contribution of aerosol species to the 2019 smoke episodes over the east coast of peninsular Malaysia.

    Get PDF
    Large-scale biomass burning (BB) emits large amounts of aerosols that lead to transboundary smoke events and adversely impacts human health, whilst causing societal and environmental issues. High ambient PM2.5 concentration in the year 2019 based on New Malaysia Ambient Air Quality Standard (NMAAQS) was identified as high pollution episodes, HP1 and HP2 on the east coast Peninsular Malaysia (ECPM). Meanwhile, the low PM2.5 concentration episodes are known as LP1 and LP2. The transboundary smoke events in Indochina and Indonesia are linked to HP1 (March–April) and HP2(August–September), respectively from backward trajectory and MERRA-2 model re-analyses weather data. The correlation analysis showed a significantly strong positive correlation (r) of black carbon (HP1: 0.91; HP2: 0.96), organic carbon (HP1: 0.90; HP2: 0.94), and sulphate (HP1: 0.80; HP2: 0.61) with the aerosol optical depth (AOD) levels during high pollution episodes. The synoptic weather condition and inter-monsoon in HP1 and southwest monsoon in HP2 introduce strong wind speed and favourable wind pattern that can initiate the long-range transport of high AOD and PM2.5 to the ECPM region. In conclusion, this study demystified the sources of BB emissions, the transport route of transboundary smoke events, their influence factors during different high pollution periods, and the links between aerosol species from local and non-local emissions with AOD levels and PM2.5 concentrations along the ECPM, which altogether provide crucial information on climate variability signal and can help in developing a corresponding strategy for high pollution episodes

    The silver lining of COVID‐19: estimation of short‐term health impacts due to lockdown in the Yangtze River Delta region, China.

    Get PDF
    The outbreak of COVID-19 in China has led to massive lockdowns in order to reduce the spread of the epidemic and control human-to-human transmission. Subsequent reductions in various anthropogenic activities have led to improved air quality during the lockdown. In this study, we apply a widely used exposure-response function to estimate the short-term health impacts associated with PM2.5 changes over the Yangtze River Delta (YRD) region due to COVID-19 lockdown. Concentrations of PM2.5 during lockdown period reduced by 22.9% to 54.0% compared to pre-lockdown level. Estimated PM2.5-related daily premature mortality during lockdown period is 895 (95% confidential interval: 637–1,081), which is 43.3% lower than pre-lockdown period and 46.5% lower compared with averages of 2017–2019. According to our calculation, total number of avoided premature death aassociated with PM2.5 reduction during the lockdown is estimated to be 42.4 thousand over the YRD region, with Shanghai, Wenzhou, Suzhou (Jiangsu province), Nanjing, and Nantong being the top five cities with largest health benefits. Avoided premature mortality is mostly contributed by reduced death associated with stroke (16.9 thousand, accounting for 40.0%), ischemic heart disease (14.0 thousand, 33.2%), and chronic obstructive pulmonary disease (7.6 thousand, 18.0%). Our calculations do not support or advocate any idea that pandemics produce a positive note to community health. We simply present health benefits from air pollution improvement due to large emission reductions from lowered human and industrial activities. Our results show that continuous efforts to improve air quality are essential to protect public health, especially over city-clusters with dense population

    The importance of NOx control for peak ozone mitigation based on a sensitivity study using CMAQ‐HDDM‐3D model during a typical episode over the Yangtze River delta region, China.

    Get PDF
    In recent years, ground-level ozone (O3) has been one of the main pollutants hindering air quality compliance in China's large city-clusters including the Yangtze River Delta (YRD) region. In this work, we utilized the process analysis (PA) and the higher-order decoupled direct method (HDDM-3D) tools embedded in the Community Multiscale Air Quality model (CMAQ) to characterize O3 formation and sensitivities to precursors during a typical O3 pollution episode over the YRD region in July 2018. Results indicate that gas-phase chemistry contributed dominantly to the ground-level O3 although a significant proportion was chemically produced at the middle and upper boundary layer before reaching the surface via diffusion process. Further analysis of the chemical pathways of O3 and Ox formation provided deep insights into the sensitivities of O3 to its precursors that were consistent with the HDDM results. The first-order sensitivities of O3 to anthropogenic volatile organic compounds (AVOC) were mainly positive but small, and temporal variations were negligible compared with those to NOx. During the peak O3 time in the afternoon, the first- and second-order sensitivities of O3 to NOx were significantly positive and negative, respectively, suggesting a convex response of O3 to NOx over most areas including Shanghai, Hangzhou, Nanjing and Hefei. These findings further highlighted an accelerated decrease in ground-level O3 in the afternoon corresponding to continuous decrease of NOx emissions in the afternoon. Therefore, over the YRD region including its metropolises, NOx emission reductions will be more important in reducing the afternoon peak O3 concentration compared with the effect of VOC emission control alone

    Spatiotemporal impact of COVID-19 on Taiwan air quality in the absence of a lockdown: Influence of urban public transportation use and meteorological conditions

    Get PDF
    The unprecedented outbreak of COVID-19 significantly improved the atmospheric environment for lockdown-imposed regions; however, scant evidence exists on its impacts on regions without lockdown. A novel research framework is proposed to evaluate the long-term monthly spatiotemporal impact of COVID-19 on Taiwan air quality through different statistical analyses, including geostatistical analysis, change detection analysis and identification of nonattainment pollutant occurrence between the average mean air pollutant concentrations from 2018–2019 and 2020, considering both meteorological and public transportation impacts. Contrary to lockdown-imposed regions, insignificant or worsened air quality conditions were observed at the beginning of COVID-19, but a delayed improvement occurred after April in Taiwan. The annual mean concentrations of PM10, PM2.5, SO2, NO2, CO and O3 in 2020 were reduced by 24%, 18%, 15%, 9.6%, 7.4% and 1.3%, respectively (relative to 2018–2019), and the overall occurrence frequency of nonattainment air pollutants declined by over 30%. Backward stepwise regression models for each air pollutant were successfully constructed utilizing 12 meteorological parameters (R2 > 0.8 except for SO2) to simulate the meteorological normalized business-as-usual concentration. The hybrid single-particle Lagrangian integrated trajectory (HYSPLIT) model simulated the fate of air pollutants (e.g., local emissions or transboundary pollution) for anomalous months. The changes in different public transportation usage volumes (e.g., roadway, railway, air, and waterway) moderately reduced air pollution, particularly CO and NO2. Reduced public transportation use had a more significant impact than meteorology on air quality improvement in Taiwan, highlighting the importance of proper public transportation management for air pollution control and paving a new path for sustainable air quality management even in the absence of a lockdown
    corecore